Spring 2022 Course Syllabus

Did you know that energy is the number one contributor to climate change? Take this course to learn how technologies - from solar PV to batteries to hydraulic fracturing - are changing the way we use energy, and how your personal decisions can make a difference. Build your energy knowledge! Experience the real world in energy through field trips to energy-related sites!

Students of all backgrounds and majors - both graduate and undergraduate - are welcome. Experience a course that has been taught for over 30 years and be connected to a large network of students and alumni.

We want to build your literacy around the topic of energy and empower you to make better decisions, personally and professionally, by giving you knowledge of our energy systems. We are passionate about this topic because we care about people, equity and justice, and the environment.

Course topics

<table>
<thead>
<tr>
<th>CROSS-CUTTING</th>
<th>FOSSIL</th>
<th>ELECTRICITY</th>
<th>NUCLEAR</th>
<th>SEMI-RENEWABLE</th>
<th>RENEWABLE</th>
<th>END USE</th>
<th>CROSS-CUTTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Basics</td>
<td>Oil</td>
<td>Transmission Industry & Markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td>Energy & Climate Change</td>
<td>Natural Gas</td>
<td>Decarbonization of the Electric Power Sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Developing World</td>
</tr>
<tr>
<td>Energy at Stanford</td>
<td>Coal</td>
<td>Energy Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Energy Policy</td>
</tr>
<tr>
<td>Hydrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbon Capture</td>
</tr>
</tbody>
</table>
One-Page Summary of Understand Energy

Lectures: 90 min. MWF, 11:30am - 1:00 pm, March 28th - June 1st 2022, Location: Shriram 104

Workshop (only for students enrolled for 5 units): Mondays, 1:30 - 2:50 pm, Y2E2 299

Instructors: Diana Gragg, Kirsten Stasio, and Jane Woodward
https://energy.stanford.edu/understand-energy/instructors

Teaching Assistants:
- Cameron Morelli cmorelli@stanford.edu
- Shreya Reddy sr1998@stanford.edu
- Sheila Naby snaby@stanford.edu

Admin Support: Justine Dachille justined@stanford.edu

Contact for Instructors and TAs:
- Slack forum (via channels or direct messages) strongly preferred
- Main instructor contact is Diana Gragg via Slack or at moongdes@stanford.edu

Office Hours: see Canvas for times, starting week 2;

Course Websites and Resources:
- Canvas: https://canvas.stanford.edu/ (Modules tab for readings, videos, and lecture slides)
- Slack workspace: UEspring2022
- Course info: https://energy.stanford.edu/understand-energy
- YouTube channel: https://www.youtube.com/user/EnergyResourcesVideo

Your Recipe for Success in This Class

For the 3 unit course, you:
- Have the same requirements as the 4 unit course except you are only required to attend one off-campus field trip and write one field trip report

For the 4 unit course, you:
- Complete the assigned readings and videos before lecture (Modules in Canvas)
- Attend and participate in lecture 11:30am - 1:00 pm MWF
- Participate in Kahoot! at the beginning of some lectures for a chance to win a prize!
- Complete one homework assignment per week (due Fridays at 5 pm PT, 8 total, we automatically drop your lowest score, first one due at the end of week 2)
- Post one and respond to one energy-in-the-news article via Slack
- Attend one on-campus field trip during lecture time
- Attend two off-campus field trips and write two field trip reports
- Complete the take-home midterm (due Friday April 29th at midnight PT)
- Complete the final exam (Saturday June 4 8:30-11:30 am - however, we do offer an optional early final - likely in the morning on the last day of classes)

For the 5-unit course, you additionally:
- Attend live in-person and participate in Workshop on Mondays 1:30 - 2:50 pm
- Write a short Workshop paper (due the last day of class, Wednesday June 1, 5 pm PT)
Why Do We Teach Understand Energy?

Energy is a fundamental driver of human development and opportunity. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulatory environment, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system and think critically about how and why society has chosen particular energy resources. Students who take this course will:

1. **Develop a greater awareness** about the energy flows and systems that allow us to turn on the lights, have cold drinks, and take hot showers.

2. **Think in terms of energy systems** and grasp the complex interactions between energy resources and end uses, including the technological, scientific, policy, and economic considerations, and the private, social, and natural capital impacts along the entire energy resource life cycle.

3. **Apply this knowledge** to:
 - think critically about the role of energy resources within our broader society.
 - analyze policies and regulations and their social impacts,
 - estimate, calculate, and synthesize energy information.
 - communicate about energy use and environmental impacts in meaningful ways.
 - make informed energy decisions, from voting to consumption.
 - be a change agent and innovate solutions that improve our energy use patterns.

4. **Have fun** and remember the class as a great and challenging learning experience.

Who Should Take This Course?

Anyone with an interest in energy or environmental issues! There are no prerequisites for this course except a basic grasp of algebra. Students with and without a technical background are encouraged to enroll. More than half of the course content focuses on how society makes decisions about, and is impacted by, energy resources (including policy and regulatory decision-making; environmental, health and safety considerations; and economics), and the remainder of the course covers the technical and engineering aspects of energy resources (technology innovation, resource formation and potential, conversion processes, and system dynamics). The teaching team and your peers will be available to provide assistance on some of the more challenging aspects of the course via the online forum (Slack) and the almost daily office hours.

Course Overview

This course, which is taught in the fall and spring, provides you with an in-depth understanding of each energy resource – from fossil fuels to renewable energy.

The **4-unit** course consists of lectures three times per week with accompanying reading and video assignments to be completed prior to each lecture. You will have an opportunity to apply this knowledge and problem solve during in-class discussions, eight homework sets, the
midterm and final exams, one on-campus field trip during lecture time, and two off-campus field trips with a brief trip report.

If you take the course for **5 units**, you will additionally attend **Workshop** - a weekly 80-minute interactive working group that takes a deep dive into cross-cutting topics complementary to the *Understand Energy* lectures (see more about Workshop later in the syllabus). The Workshop will be graded on attendance, participation, and a short (800-900 word) paper due at the end of the quarter.

If you take the course for **3 units**, you will be required to attend only one off-campus field trip and write one field trip report. Otherwise you will have the same expectations as a 4 unit course.

Course Resources

Information about the course is posted on **Canvas** (https://canvas.stanford.edu/), including the syllabus, readings and videos, calendar, homework, policies, math review sheets, and grades.

Lecture slides, readings and videos for each lecture are available under the **Modules** tab. **The required readings and videos should be completed before the corresponding lecture** – we will discuss the readings and other questions during the lecture, challenging you to think critically about how society approaches issues related to energy resources. You should be prepared to debate and deliberate – we want to know what you think! **We also do a Kahoot! quiz at the beginning of some lectures covering the readings and videos. The winner of the Kahoot! quiz will get a fun prize!** Example questions you might be asked to consider for the readings or in-class discussions (see the lecture slides on Canvas for the specific questions for each lecture):

1) What are the potential and realized social, environmental, political, and economic implications of the energy resource?
2) How is society dealing with the consequences or encouraging the benefits? What policies and regulations are in place, and what is missing? How do policies and regulations differ around the world, and how does that change the benefits and consequences of using that energy resource?

3) How do we as a society value the different aspects of the energy resource? Do we do a good job of balancing the costs and benefits?

4) What are your recommendations concerning the energy resource and how society should be valuing it?

Additional, optional videos can be found on our YouTube channel: https://www.youtube.com/user/EnergyResourcesVideo

Slack is the online forum for this course where you can ask questions and discuss and analyze energy resource topics outside of lecture. Please join our Slack workspace and the following channels:

- Workspace: UESpring2022
- Channels:
 - #energy-in-the-news
 - #homework
 - #office-hours
 - #discussion

You can ask questions about the course material, homework, and energy in general. You will receive the most rapid responses from the teaching team through Slack. You are encouraged to respond to your peers’ questions too! Slack is also where you post *energy in the news* to share and analyze with your classmates (in the #energy-in-the-news channel) – including a required post and response as part of the homework assignments (more details on Canvas). You will be invited to Slack via your Stanford email by one of the TAs, so look out for that email (and check your Spam folder!). You should be aware that Stanford does not consider Slack to be compliant with the Family Educational Rights and Privacy Act of 1974 (FERPA). You can find more information here https://registrar.stanford.edu/students/student-record-privacy.

Office Hours will be held frequently (timing and location listed on Canvas) by TAs. Come by and visit us – we love talking about your energy questions!
Lectures

The basic outline of lectures is listed below. Please check Canvas for schedule changes.

<table>
<thead>
<tr>
<th>Week/Date</th>
<th>Topic</th>
</tr>
</thead>
</table>
| Week 1 (3/28) | 1. Introduction – The Unfolding Energy Revolution
2. Energy Basics, the Environment, and Equity
3. Energy and Climate Change |
| Week 2 (4/4) | 4. Intro to Fossil Fuels; Prospecting for Oil & Natural Gas
5. Oil and Natural Gas Drilling and Well Completion
6. Oil Production, Transportation and Refining (HW1 due) |
| Week 3 (4/11) | 7. Natural Gas
8. Coal
9. Electricity Generation (HW2 due) |
11. Energy Storage
12. Decarbonization in the Electric Power Sector (HW3 due) |
14. Energy Policy
15. Local Field Trips (MIDTERM DUE) |
| Week 6 (5/2) | 16. Intro to Renewable Energy
17. Solar Energy
18. Hydrogen / CCUS (HW4 due) |
| Week 7 (5/9) | 19. Energy Efficiency as a Resource
20. Wind Energy
21. Biomass (HW5 due) |
| Week 8 (5/16) | 22. Hydroelectricity
23. Geothermal
24. Ocean / SMR / Fusion (HW 6 due) |
| Week 9 (5/23) | 25. Energy for Buildings
26. Energy and Transportation
27. Energy for the Developing World (HW7 due) |
| Week 10 (5/30) | MEMORIAL DAY - no class!
28. Course Wrap-up (HW8 due, optional early final) |

Final exam Saturday 6/4 8:30-11:30 am
Course Grading

<table>
<thead>
<tr>
<th></th>
<th>3-Unit Option</th>
<th>4-Unit Option</th>
<th>5-Unit Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>23%</td>
<td>Homework</td>
<td>Homework</td>
</tr>
<tr>
<td>Field Trip</td>
<td>7%</td>
<td>Field Trips</td>
<td>Field Trips</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>28%</td>
<td>Midterm Exam</td>
<td>Midterm Exam</td>
</tr>
<tr>
<td>Final Exam</td>
<td>37%</td>
<td>Final Exam</td>
<td>Final Exam</td>
</tr>
<tr>
<td>Participation</td>
<td>5%</td>
<td>Participation</td>
<td>Participation</td>
</tr>
<tr>
<td>Extra Credit</td>
<td>0.5%</td>
<td>Extra Credit</td>
<td>Extra Credit</td>
</tr>
</tbody>
</table>

Final letter grades are assigned based on a curve. The undergraduate course (CEE 107A/EARTHSYS 103) is curved separately from the graduate course (CEE 207A).

All assignments must be submitted online via Canvas on the day they are due. Please make sure the submitted homework is legible, otherwise points may be taken off. Either type all of your homework, showing all work, in Word and export to PDF at the end, or hand-write your assignment and take photos and convert to PDF at the end. Some students have found that using photo/scanning software made it easier to submit their hand-written homework assignments as one document (e.g., TurboScan or GeniusScan).

Homework:
- You are assigned 8 homework sets. Your 7 highest scores will be used to calculate this part of your grade (your lowest HW grade is automatically dropped). The intent of this policy is to allow you flexibility to not turn in a homework assignment one week during the quarter when you’re especially busy or something comes up - so please do not ask for an extension. If you’re taking the graduate level course (CEE 207A), you will have additional problems on the homework sets. Please refer to the Homework Policy on Canvas for information and clarification about collaborating with peers on homework assignments. No homework assignment is assigned during week 1 or during week 5 (when you have the midterm exam).
- You need to post an *Energy-in-the-News* article on Slack in the #energy-in-the-news channel once during the quarter, and respond to one from another student once during the quarter. More information is provided on Canvas.

Midterm Exam:
- The midterm exam will be take-home, open note/book/internet - but not open to other people (collaboration with others is encouraged for homework assignments, but not allowed for the take-home exam).
- The midterm exam covers all lectures and readings/videos prior to the midterm exam (through Lecture 13).
- You will have a little over 48 hours to complete the midterm exam. The exam will be provided via Canvas at 5 pm on Wednesday April 27th and due Friday April 29th at midnight PT.
Final Exam: The final exam is closed-book and closed-notes. The TAs will provide a study list and hold a review session prior to the exam.

- The final exam covers the entirety of course lectures and readings, but will emphasize the material covered post-midterm.
- The final exam will be held on Saturday June 4th from 8:30 am to 11:30 am (location TBD)
- We will likely offer an optional early final exam on Wednesday June 1st (location TBD)

Field Trips:

- You must attend one on-campus, local field trip offered during class time, and two off-campus field trips (choosing out of ~9 field trips offered). Students must write an 800-word report for each off-site field trip (2 total).
- Field trips are graded on attendance (15%) and on the two field trip reports (85%).
- If you must withdraw from a field trip that you are signed up for, notify the Field Trip TA at least 7 days prior to the trip. If you withdraw before the deadline, you will be placed on a waitlist for another trip. Missing or withdrawing from a trip after this deadline, even if the trip is not one of your required field trips, will result in zero attendance points, except in cases of emergency.
- For more information, please refer to the Field Trip Policy and Writing Guidelines documents available on Canvas, and the Field Trip section in this syllabus.

Attendance and Participation:

- **Participation will be tracked in lecture.** The goal of the participation part of the course is to engage you in the discussion, enhance the learning experience for yourself and your peers, and give you another avenue to test out your thoughts and views on energy in a welcoming and supportive environment. We want to reward you for participating – through giving you credit, but also through the enhanced experience you will have in class.
- **Participation will be graded based on both the quantity and the quality of your statements during lecture.** Questions, while welcome, do not count towards your participation grade.
- Example of participation events include:
 - **Energy-in-the-news** – what is going on in the news that is relevant to energy topics? What are your views on it?
 - **Readings / videos** – what did you learn? What struck you about it? How does your experience shape your views on x?
 - **Engagement in lecture** – what are two important things we just covered (in the last section, or last 10 minutes)? Why are they relevant? Does anything you’ve learn challenge/expand your perspectives on x?
 - **In-lecture discussion** – led by instructor, pros and cons of a topic (i.e. Name one thing in support of and one thing against x technology), digging deeper into an issue, etc.
 - **Field trip summary** – what was most surprising about the off-campus field trips you attended? What would your fellow classmates find most interesting?
 - **Find new awesome energy videos** – we’re constantly looking for new short (3-5 min preferred) videos that explain an energy concept or system – and we’d love your help! Submit cool energy videos to the TAs as a way to get some participation points!
If you have **concerns or questions** about your participation grade, please feel free to contact Diana or a TA at anytime!

Workshop:

- The Workshop will be graded on **attendance (20%), participation (60%), and a short (800-900 word) paper (20%).** See more details below.

Extra credit:

- Personal Slide: Submit a single slide about yourself and your interest in energy for the slide show on the last day of class (updated from the slide you submit with the first homework assignment) (0.5%). See more details on Canvas.

Field Trips

Field trips give you the opportunity to:

1) Gain a deeper understanding of energy fundamentals from lecture and reading by providing a physical context in which to apply key concepts.

2) Observe and analyze, first-hand, how society makes decisions about energy resources by interacting with decision-makers within Stanford and California.

3) Interact with operators in the energy industry and gain insight on their views on the industry’s job opportunities, environmental impacts, policies and regulations, etc.

4) Obtain real-world skills, through host interactions and trip preparation and synthesis.

For the 4 unit and 5 unit options, you must attend three field trips planned by the teaching team, one local field trip during normal class time and two off-campus field trips outside of normal class meetings. For the 3 unit option, you only need to attend the local on campus field trip and one off-campus field trip.

On the local field trip, you will explore options such as a campus energy-related facility, including the Stanford Energy System Innovations (SESI), Stanford’s Parking and Transportation Services (P&TS), and others. A full list of options will be provided when local field trip sign-ups occur.

For the off-campus field trips, you will choose two from the list of field trips provided. Listed below are some possible field trip sites. The final list with dates and times will be provided for students to sign-up the first week of the quarter. We will send out a survey during the first week of classes for you to provide your preferences for our offered off-campus field trips with the specific dates and times.

<table>
<thead>
<tr>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Ardo Oil Field</td>
</tr>
<tr>
<td>Diablo Canyon</td>
</tr>
</tbody>
</table>
Black Diamond Mines (coal)

Rancho Seco Solar PV, Retired Nuclear Power Plant and Biodigester

NexTracker Solar PV

Shasta Dam & Hydroelectric Power Plant

California Independent System Operator (CAISO)

Lodi Energy Center

You will write a short report (800 words max) for each off-campus field trip you attend to reflect on and think critically about the trip. Prompts will be provided for each field trip. Detailed field trip policies, writing guidelines and prompts, schedules, and handouts are available on Canvas.

Workshop (for the 5-unit course)

Mondays, 1:30 - 2:50 pm, Y2E2 299

The 5th unit involves an interactive workshop where we examine cross-cutting energy-relevant issues like sustainability, equity, carbon pricing, air pollution, transportation and policy. We discuss some of the most fascinating systems-level concepts surrounding energy and develop your thinking in these small-group discussions, taught by Dr. Diana Gragg, occasional guests, and the TAs. Workshop sessions meet once per week for 80 minutes. Students will often work collaboratively in small groups during the workshop session. Session topics may change – check with the instructors for an up-to-date schedule.

Topics:

<table>
<thead>
<tr>
<th>Week 1 (3/28-4/1)</th>
<th>1. Energy and Sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2 (4/4-4/8)</td>
<td>2. Hydraulic Fracturing Deep Dive</td>
</tr>
<tr>
<td>Week 3 (4/11-4/15)</td>
<td>3. Energy and Climate Adaptation in Developing Countries</td>
</tr>
<tr>
<td>Week 6 (5/2-5/6)</td>
<td>6. Carbon Pricing: Cap and Trade / Carbon Tax</td>
</tr>
</tbody>
</table>
Week 8
(5/16-5/20)
8. EnRoads: Technology to the Rescue?

Week 9
(5/23-5/27)
9. Transportation Policies and Programs – U.S., California, and Stanford

Workshop is 20% of your overall grade, broken down in the following ways:

Attendance: 20% of your grade
Attendance is a key part of Workshop and we will enforce a strict attendance policy. Out of the 9 weeks of the Workshop, you are allowed one excused absence with the completion of a two page paper on the topic of the class you miss. Please email Diana at least a week in advance to request permission to miss class, or as soon as possible in case of emergency. You will receive 0 credit for attendance and participation with each unexcused absence.

Participation: 60% of your grade
In order to foster a productive discussion, we will be looking for everyone to add comments, ask questions, raise issues, and think critically during the conversation and to enthusiastically participate in classroom activities. If you feel as though you are having trouble making your voice heard, please contact the instructor. From time to time, participation might also include a short assignment to be turned in or presented in class.

Final Paper: 20% of your grade (40 points)
The paper should be 800-900 words, due by 5 pm on the last day of classes, June 1st. The paper can be submitted online through Canvas. See Workshop Report Writing Guidelines on Canvas for grading rubric.

The goal of the paper is to:

1) **investigate an energy source and an associated issue**, such as sustainability, climate, water, land, wildlife, air quality, etc.
2) **put the issue into context** – how important is it? What policies are related to it? How effective are they? What does society think about this energy source, and how has that changed over time?
3) **think critically** about what you would **do differently** about the issue and how you would go about making those changes happen

SCPD Students

Understand Energy is also offered remotely for 3 units for SCPD students. As an SCPD student, you:

- Complete the assigned readings and videos before lecture (Modules in Canvas)
- Watch the recorded lectures asynchronously
- Complete one homework assignment per week (due Fridays at 5 pm PT, 8 total, we automatically drop your lowest score, first one due at the end of week 2)
- Post one and respond to one energy-in-the-news article via Slack
- Either join an off-campus field trip and write a field trip report, or write a Local Energy Research Report (due Friday, May 20, 5pm PT)
- Complete the take-home midterm (due Friday April 29th at midnight PT)
- Complete the final exam remotely (Saturday June 4 8:30-11:30 am or during the optional early final - likely the last day of classes)

<table>
<thead>
<tr>
<th>SCPD Students 3-Unit Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
</tr>
<tr>
<td>Midterm Exam</td>
</tr>
<tr>
<td>Final Exam</td>
</tr>
<tr>
<td>Local Energy Research Rpt</td>
</tr>
<tr>
<td>Extra Credit</td>
</tr>
</tbody>
</table>

Explore Energy

Are you interested in knowing more about energy opportunities at Stanford? Energy-related majors, courses, internships, jobs, etc.? Check out the Explore Energy website to find out more: https://energy.stanford.edu/explore-energy

The Teaching Team

Diana Gragg: Diana is a Core Lecturer in Civil and Environmental Engineering (CEE) at Stanford and the Managing Director of Explore Energy / Understand Energy at the Precourt Institute for Energy. She received her M.S. and PhD in the CEE Atmosphere/Energy program in 2012, a postdoc at the Precourt Energy Efficiency Center in 2015 and has a background in the oil and chemical industry, air pollution, and sustainable transportation. She took the class way back in 2004, and joined the teaching team in 2015. She loves animals, running, hiking, water polo, skiing – and anything that involves spending time with her family.

Kirsten Stasio: Kirsten is the Executive Director of the [Nevada Clean Energy Fund (NCEF)](http://energy.stanford.edu) and an Adjunct Professor in CEE at Stanford. She graduated from Stanford in 2014 with an E-IPER MS degree and an MBA. Her background includes working for 7 years to scale wind, solar, and energy storage investments at MAP Energy, implementing commercial energy efficiency initiatives at Pacific Gas and Electric (PG&E) and at Apple, and advancing climate policy at the World Resources Institute (WRI).

Jane Woodward: Jane is an Adjunct Professor in CEE at Stanford and has been teaching a version of this course since 1991. She is a founder and managing partner of MAP Energy, a private energy investment firm.

The teaching team's complete bios are available at: https://energy.stanford.edu/understand-energy/instructors. Please use Slack to contact the teaching team (either publicly or privately).
Honor Code

Violating Stanford University’s Honor Code is a serious offense, even when the violation is unintentional. The Honor Code is available at: https://communitystandards.stanford.edu/student-conduct-process/honor-code-and-fundamental-standard

Specifically, adhering to the Stanford Honor Code implies that all work in exams and quizzes must be done individually. For homework, students may consult with TAs and with other students, but must write up solutions independently based on their own understanding. All references and sources (e.g., in field trip reports) must be clearly identified and properly referenced. Lastly, if you work with other students on a homework set, you must acknowledge their names on the front page of your submission. Please refer to the Homework Policy posted on Canvas regarding collaboration on homework assignments.

Access and Accommodations

Stanford is committed to providing equal educational opportunities for disabled students. Disabled students are a valued and essential part of the Stanford community. We welcome you to our class.

If you experience disability, please register with the Office of Accessible Education (OAE). Professional staff will evaluate your needs, support appropriate and reasonable accommodations, and prepare an Academic Accommodation Letter for faculty. To get started, or to re-initiate services, please visit oae.stanford.edu.

If you already have an Academic Accommodation Letter, we invite you to share your letter with us. Academic Accommodation Letters should be shared at the earliest possible opportunity so we may partner with you and OAE to identify any barriers to access and inclusion that might be encountered in your experience of this course.

COVID-19

Given that we are still in the midst of a global pandemic, if you feel sick, do not come to class, even if you suspect you just have a cold or allergies. Please do this out of an abundance of caution and out of respect for your peers and the teaching team and guests. We will be very accommodating on illness-related absences and will help you make-up for any missed work.

In compliance with Santa Clara County policies effective August 2021, Stanford University is mandating the use of masks indoors for everyone, regardless of vaccination status. This means that whenever we spend time together indoors - in class, labs, office hours, and field trips - we are each required to wear a mask that fully covers your nose and mouth. If we see someone not wearing a mask indoors, this is not necessarily a violation of the requirement. Some of us have health conditions precluding our ability to wear masks. Students in this situation should work with the Office of Accessible Education immediately, to receive an accommodation for a
mask exemption. In addition, some of us might feel more comfortable wearing masks even when not required, such as when we are outdoors. Some of us might feel more comfortable social distancing even when not required, for example, during small-group work in class while masked. All of our preferences are reasonable, and it is important that we treat each others’ preferences with respect and care.

In the first couple of weeks of class, we will formulate community commitments for how we will interact with one another. One of the issues we will explicitly discuss is honoring our respective preferences for COVID-19 health and safety beyond the bare requirements, so that we each feel comfortable and prepared to learn in class. You can find the most current policies on campus masking requirements on the COVID-19 Health Alerts site.