Fall 2021 Course Syllabus

Did you know that energy is the number one contributor to climate change? Take this course to learn how technologies - from solar PV to batteries to hydraulic fracturing - are changing the way we use energy, and how your personal decisions can make a difference. Build your energy knowledge!

Students of all backgrounds and majors - both graduate and undergraduate - are welcome. Experience a course that has been taught for over 30 years and be connected to a large network of students and alumni. You will also be able to join us on future field trips to energy-related sites!

We want to build your literacy around the topic of energy and empower you to make better decisions, personally and professionally, by giving you knowledge of our energy systems. We are passionate about this topic because we care about people, equity and justice, and the environment.

Course topics
One-Page Summary of Understand Energy

Lectures: 90 min. MWF, 1:30 - 3:00 pm, Sept. 20th - Dec. 10th 2021, ONLINE via Zoom

Discussion section: 60 min, once/week (attendance required), in-person

Workshop (only for students enrolled for 5 units): Wednesdays, 3:15 - 4:35 pm, in-person, location TBD

Instructors: Diana Gragg, Kirsten Stasio, and Jane Woodward
https://energy.stanford.edu/understand-energy/instructors

Teaching Assistants:
- Benjamin Amoh amohk@stanford.edu
- Marlies Michielssen marliesm@stanford.edu
- Daniel Hills-Bunnell danielhb@stanford.edu
- Frances Palmer fpalmer@stanford.edu

Admin Support: Justine Dachille justined@stanford.edu

Contact for Instructors and TAs:
- Slack forum (via channels or direct messages) strongly preferred
- Main instructor contact is Diana Gragg via Slack or at moongdes@stanford.edu

Office Hours: see Canvas for times, starting week 2;

Course Websites and Resources:
- Canvas: https://canvas.stanford.edu/ (Modules tab for readings, videos, and lecture slides, Zoom tab for live lecture link, Panopto tab for recorded lectures)
- Slack workspace: UEaut2021
- Course info: https://energy.stanford.edu/understand-energy
- YouTube channel: https://www.youtube.com/user/EnergyResourcesVideo

Your Recipe for Success in This Class

For the 4 unit course, you:
- Complete the assigned readings and videos before lecture (Modules in Canvas)
- Attend and participate in lecture 1:30 - 3:00 pm MWF (via Zoom); attendance is encouraged but not required; recorded lectures are available in the Panopto tab
- Participate in Kahoot! at the beginning of some lectures for a chance to win a prize!
- Attend live in-person and participate in one small group 60-min discussion section each week (7 total during the quarter; multiple day/time options TBD)- attendance required
- Complete one homework assignment per week (due Fridays at 5 pm PT, 8 total, we automatically drop your lowest score, first one due at the end of week 2)
- Post one and respond to one energy-in-the-news article via Slack
- Complete the take-home midterm (due Friday October 22nd at midnight PT)
- Write a Local Energy Research Report (due Friday November 19, 5 pm PT)
- Complete the final exam (timing TBD)

For the 5-unit course, you additionally:
- Attend live in-person and participate in Workshop on Wednesdays 3:15 - 4:35 pm
- Write a short Workshop paper (due the last day of class, Friday December 3, 5 pm PT)
For the Fall 2021 quarter, there will be an on-campus field trip during lecture time and virtual field trips in lieu of off-campus field trips due to COVID-19.

All students who take Understand Energy are always welcome to attend our off-campus field trips in future quarters – please join us on these amazing trips then!

Why Do We Teach Understand Energy?

Energy is a fundamental driver of human development and opportunity. At the same time, our energy system has significant consequences for our society, political system, economy, and environment. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulatory environment, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system and think critically about how and why society has chosen particular energy resources. Students who take this course will:

1. **Develop a greater awareness** about the energy flows and systems that allow us to turn on the lights, have cold drinks, and take hot showers.

2. **Think in terms of energy systems** and grasp the complex interactions between energy resources and end uses, including the technological, scientific, policy, and economic considerations, and the private, social, and natural capital impacts along the entire energy resource life cycle.

3. **Apply this knowledge** to…
 - think critically about the role of energy resources within our broader society.
 - analyze policies and regulations and their social impacts,
 - estimate, calculate, and synthesize energy information.
 - communicate about energy use and environmental impacts in meaningful ways.
 - make informed energy decisions, from voting to consumption.
 - be a change agent and innovate solutions that improve our energy use patterns.

4. **Have fun** and remember the class as a great and challenging learning experience.

Who Should Take This Course?

Anyone with an interest in energy or environmental issues! There are no prerequisites for this course except a basic grasp of algebra. Students with and without a technical background are encouraged to enroll. More than half of the course content focuses on how society makes decisions about, and is impacted by, energy resources (including policy and regulatory decision-making; environmental, health and safety considerations; and economics), and the remainder of the course covers the technical and engineering aspects of energy resources (technology innovation, resource formation and potential, conversion processes, and system dynamics). The teaching team and your peers will be available to provide assistance on some of the more challenging aspects of the course via the online forum (Canvas) and the almost daily office hours.
Course Overview

This course, which is taught in the fall and spring, provides students with an in-depth understanding of each energy resource – from fossil fuels to renewable energy.

The 4-unit course consists of lectures three times per week with accompanying reading and video assignments to be completed prior to each lecture, plus one 60-min discussion section per week. Students will have an opportunity to apply this knowledge and problem solve during in-class discussions, eight homework sets, the local energy research report, the midterm and final exams, and one on-campus field trip during lecture time.

For 5 units, students will additionally attend Workshop - a weekly 80-minute interactive working group that takes a deep dive into cross-cutting topics complementary to the Understand Energy lectures (see more about Workshop later in the syllabus). The Workshop will be graded on attendance, participation, and a short (800-900 word) paper due at the end of the quarter.

The 3-unit option requires instructor approval – please contact Diana Gragg.

Course Resources

Information about the course is posted on Canvas (https://canvas.stanford.edu/), including the syllabus, readings and videos, calendar, homework, policies, math review sheets, and grades.

Lecture slides, readings and videos for each lecture are available under the Modules tab. The required readings and videos should be completed before the corresponding lecture – we will discuss the readings and other questions during lecture and discussion section, challenging you to think critically about how society approaches issues related to energy resources. You should be prepared to debate and deliberate – we want to know what you think! We also do a Kahoot! quiz at the beginning of some lectures covering the readings and videos. The winner of the Kahoot! quiz will get a fun prize! Example questions you
might be asked to consider for the readings or in-class discussions (see the lecture slides on Canvas for the specific questions for each lecture):

1) What are the potential and realized social, environmental, political, and economic implications of the energy resource?

2) How is society dealing with the consequences or encouraging the benefits? What policies and regulations are in place, and what is missing? How do policies and regulations differ around the world, and how does that change the benefits and consequences of using that energy resource?

3) How do we as a society value the different aspects of the energy resource? Do we do a good job of balancing the costs and benefits?

4) What are your recommendations concerning the energy resource and how society should be valuing it?

Additional, optional videos can be found on our YouTube channel: https://www.youtube.com/user/EnergyResourcesVideo

Slack is the online forum for this course where students can ask questions and discuss and analyze energy resource topics outside of lecture. Please join our Slack workspace and the following channels:

- Workspace: UEAut2021
- Channels:
 - #energy-in-the-news
 - #homework
 - #office-hours
 - #discussion

You can ask questions about the course material, homework, and energy in general. You will receive the most rapid responses from the teaching team through Slack. You are encouraged to respond to your peers’ questions too! Slack is also where you post "energy in the news" to share and analyze with your classmates (in the #energy-in-the-news channel) – including a required post and response as part of the homework assignments (more details on Canvas). You will be invited to Slack via your Stanford email by one of the TAs, so look out for that email (and check your Spam folder!). You should be aware that Stanford does not consider Slack to be compliant with the Family Educational Rights and Privacy Act of 1974 (FERPA). You can find more information here https://registrar.stanford.edu/students/student-record-privacy.

Office Hours will be held frequently (timing and location listed on Canvas) by TAs and instructors. Come by and visit us – we love talking about your energy questions!

Zoom will be used for the live lectures - the Zoom link can be accessed in Canvas. Recorded lectures will be available in the Panopto tab on Canvas. We strongly encourage you to attend the lectures live. We start lecture with energy-in-the-news (a great way to get participation points) and will have opportunities to participate in in-class discussions. We also encourage you to put questions in the chat during lecture for the teaching team to answer as we go, or to come off mute and ask questions when the instructor stops for questions. Please see the Zoom guidance document on Canvas for more. We are trying to reserve a room to allow students to have a shared space to join the Zoom lectures live - more soon.
Lectures

The basic outline of lectures is listed below. **Please check Canvas for schedule changes.**

<table>
<thead>
<tr>
<th>Week/Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>1. Introduction – The Unfolding Energy Revolution</td>
</tr>
<tr>
<td>(9/20-9/24)</td>
<td>2. Energy Basics, the Environment, and Equity</td>
</tr>
<tr>
<td></td>
<td>3. Intro to Fossil Fuels; Prospecting for Oil & Natural Gas</td>
</tr>
<tr>
<td>Week 2</td>
<td>4. Oil and Natural Gas Drilling and Well Completion</td>
</tr>
<tr>
<td>(9/27-10/1)</td>
<td>5. Oil Production and Transportation</td>
</tr>
<tr>
<td></td>
<td>6. Oil Refining and Products</td>
</tr>
<tr>
<td>Week 3</td>
<td>7. Coal</td>
</tr>
<tr>
<td>(10/4-10/8)</td>
<td>8. Natural Gas</td>
</tr>
<tr>
<td></td>
<td>9. Electricity Generation</td>
</tr>
<tr>
<td>Week 4</td>
<td>10. Nuclear Power</td>
</tr>
<tr>
<td>(10/11-10/15)</td>
<td>11. The Grid: Electricity Transmission, Industry, & Markets</td>
</tr>
<tr>
<td></td>
<td>12. Decarbonization in the Electric Power Sector</td>
</tr>
<tr>
<td>Week 5</td>
<td>13. Energy Storage</td>
</tr>
<tr>
<td>(10/18-10/22)</td>
<td>14. Energy and Climate Change</td>
</tr>
<tr>
<td></td>
<td>15. Local Field Trips</td>
</tr>
<tr>
<td>Week 6</td>
<td>16. Hydrogen / CCUS</td>
</tr>
<tr>
<td>(10/25-10/29)</td>
<td>17. Intro to Renewable Energy</td>
</tr>
<tr>
<td></td>
<td>18. Biomass</td>
</tr>
<tr>
<td>Week 7</td>
<td>19. Hydroelectricity</td>
</tr>
<tr>
<td>(11/1-11/5)</td>
<td>20. Energy Efficiency as a Resource</td>
</tr>
<tr>
<td></td>
<td>21. Energy for Buildings</td>
</tr>
<tr>
<td>Week 8</td>
<td>22. Wind Energy</td>
</tr>
<tr>
<td></td>
<td>24. Geothermal</td>
</tr>
<tr>
<td>Week 9</td>
<td>25. Ocean / SMR / Fusion</td>
</tr>
<tr>
<td></td>
<td>27. Energy for the Developing World</td>
</tr>
<tr>
<td>(11/22-11/26)</td>
<td>THANKSGIVING BREAK</td>
</tr>
<tr>
<td>Week 10</td>
<td>28. Energy and Transportation</td>
</tr>
<tr>
<td>(11/29-12/3)</td>
<td>29. Industry Panel</td>
</tr>
<tr>
<td></td>
<td>30. Course Wrap-Up</td>
</tr>
<tr>
<td>(12/6-12/10)</td>
<td>FINAL EXAM (date and time TBD)</td>
</tr>
</tbody>
</table>
Course Grading

<table>
<thead>
<tr>
<th>4-Unit Option</th>
<th>5-Unit Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>Homework</td>
</tr>
<tr>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Local Energy Research Report</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>Midterm Exam</td>
</tr>
<tr>
<td></td>
<td>23%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Final Exam</td>
</tr>
<tr>
<td></td>
<td>32%</td>
</tr>
<tr>
<td>Attendance / Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Extra Credit</td>
<td>Extra Credit</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Final letter grades are assigned based on a curve. The undergraduate course (CEE 107A/EARTHSYS 103) is curved separately from the graduate course (CEE 207A).

All assignments must be submitted online via Canvas on the day they are due. Please make sure the submitted homework is legible, otherwise points may be taken off. Either type all of your homework, showing all work, in Word and export to PDF at the end, or hand-write your assignment and take photos and convert to PDF at the end. Some students have found that using photo / scanning software made it easier to submit their hand-written homework assignments as one document (e.g., TurboScan or GeniusScan).

Homework:

- Students are assigned 8 homework sets. Your 7 highest scores will be used to calculate this part of your grade (your lowest HW grade is automatically dropped). The intent of this policy is to allow you flexibility to not turn in a homework assignment one week during the quarter when you’re especially busy or something comes up - so please do not ask for an extension. Students taking the graduate level course (CEE 207A) will have additional problems on the homework sets. Please refer to the Homework Policy on Canvas for information and clarification about collaborating with peers on homework assignments. No homework assignment is assigned during week 1 or during week 5 (when you have the midterm exam).

- Students must post an ‘Energy-in-the-News’ article on Slack in the #energy-in-the-news channel once during the quarter, and respond to one from another student once during the quarter. More information is provided on Canvas.

Midterm Exam:

- The midterm exam will be take-home, open note/book/internet - but not open to other people (collaboration with others is encouraged for homework assignments, but not allowed for the take-home exam).

- The midterm exam covers all lectures and readings/videos prior to the midterm exam (through Lecture 13).
You will have a little over 48 hours to complete the midterm exam. The exam will be provided via Canvas at 5 pm on Wednesday October 20th and due Friday October 22nd at midnight PT.

Final Exam: The final exam is closed-book and closed-notes. The TAs will provide a study list and hold a review session prior to the exam.
- The final exam covers the entirety of course lectures and readings, but will emphasize the material covered post-midterm.

Local Energy Research Report:
- A 1,500 to 2,000-word report about your local energy system(s)
- Report will be due on Friday November 19th at 5 pm
- For more information, please refer to the Local Energy Research Report Prompt and Guidelines document available on Canvas.

Attendance and Participation:
- **Attendance is required at the 7 weekly 60-min discussion sections.** Out of the 7 discussion sections (starts week 2, no discussion section the week of the midterm or election week), you are allowed one excused absence with the completion of a two-page paper on the topic of the class you miss. Please contact your discussion section leader at least a week in advance to request permission to miss class, or as soon as possible in case of emergency. You will receive 0 credit for attendance and participation with each unexcused absence. If you have to miss your discussion section but can attend another discussion section that same week, please discuss this possibility with your discussion section leader. **We will send out a survey during the first week of classes for you to provide your preferences for our offered discussion section times and locations.** Some of the discussion sections will be virtual and some will be in person.
- **Participation will be tracked in both lecture and discussion sections.** Much of your participation will take place during the smaller-group discussion sections. Please refer to the “Discussion Section Objectives and Grading Policy” document available on Canvas for more information. The goal of the participation part of the course is to engage you in the discussion, enhance the learning experience for yourself and your peers, and give you another avenue to test out your thoughts and views on energy in a welcoming and supportive environment. We want to **reward** you for participating – through giving you credit, but also through the enhanced experience you will have in class.
- **Participation will be graded based on both the quantity and the quality of your statements during lecture.** Questions, while welcome, do not count towards your participation grade.
- Example of participation events include:
 - **Energy-in-the-news** – what is going on in the news that is relevant to energy topics? What are your views on it?
 - **Readings/videos** – what did you learn? What struck you about it? How does your experience shape your views on x?
 - **Engagement in lecture** – what are two important things we just covered (in the last section, or last 10 minutes)? Why are they relevant? Does anything you've learn challenge/expand your perspectives on x?
 - **In-lecture discussion** – led by instructor, pros and cons of a topic (i.e. Name one thing in support of and one thing against x technology), digging deeper into an issue, etc.
Field trip summary – what was most surprising about the virtual off-campus field trip you attended? What would your fellow classmates find most interesting?

Find new, awesome energy videos – we’re constantly looking for new short (3-5 min preferred) videos that explain an energy concept or system – and we’d love your help! Submit cool energy videos to the TAs as a way to get some participation points!

- If you have concerns or questions about your participation grade, please feel free to contact Diana or a TA at anytime!

Workshop:
- The Workshop will be graded on attendance (20%), participation (60%), and a short (800-900 word) paper (20%). See more details below.

Extra credit:
- Personal Slide: Submit a single slide about yourself and your interest in energy for the slide show on the last day of class (updated from the slide you submit with the first homework assignment) (0.5%)

Field Trips

For the Fall 2021 quarter, there will be an on-campus field trip during lecture and virtual field trips in lieu of off-campus field trips. Virtual off-campus field trips will be available during certain discussion sections and in some of your assigned readings/videos. On the local field trip, students will explore one campus energy-related facility, building or system - for example, the Stanford Energy System Innovations (SESI), Stanford’s Parking and Transportation Services (P&TS), and others. A full list of options will be provided when local field trip sign-ups occur. You are welcome to join us in off-campus field trips in future quarters - to locations such as a NextEra Wind Farm, Tesla Gigafactory, Diablo Canyon Nuclear Power Plant, Shasta Hydroelectric Dam, and more!

Workshop (for the 5-unit course)

Wednesdays, 3:15 - 4:35 pm, in-person

The 5th unit involves an interactive workshop where we examine cross-cutting energy-relevant issues like sustainability, equity, carbon pricing, air pollution, transportation and policy. We discuss some of the most fascinating systems-level concepts surrounding energy and develop your thinking in these small-group discussions, taught by Dr. Diana Gragg and the TAs. Workshop sessions meet once per week for 80 minutes. Students will often work collaboratively in small groups during the workshop session. Session topics may change – check with the instructors for an up-to-date schedule.

Topics:

<table>
<thead>
<tr>
<th>Week 1 (9/20-9/24)</th>
<th>1. Energy and Sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2 (9/27-10/1)</td>
<td>2. Hydraulic Fracturing</td>
</tr>
<tr>
<td>Week 3</td>
<td>3. Air Quality and Human Health</td>
</tr>
</tbody>
</table>
Week 4 (10/11-10/15)
4. The Hydrogen Economy?

Week 5 (10/18-10/22)
5. Energy Storage Technologies

Week 6 (10/25-10/29)
6. Microgrids, Fires and Resilience

Week 7 (11/1-11/5)
7. Carbon Pricing: Cap and Trade / Carbon Tax

Week 8 (11/8-11/12)
8. Inclusive Clean Energy Economy

Week 9 (11/15-11/19)
9. Energy and Resilience / Adaptation

11/22-11/26 THANKSGIVING BREAK

Week 10 (11/29-12/3)
10. EnRoads: Technology to the Rescue?

Workshop is 20% of your overall grade, broken down in the following ways:

Attendance: 20% of your grade

Attendance is a key part of Workshop and we will enforce a strict attendance policy. Out of the 10 weeks of the Workshop, you are allowed one excused absence with the completion of a two page paper on the topic of the class you miss. Please e-mail Diana at least a week in advance to request permission to miss class, or as soon as possible in case of emergency. You will receive 0 credit for attendance and participation with each unexcused absence.

Participation: 60% of your grade

In order to foster a productive discussion, we will be looking for everyone to add comments, ask questions, raise issues, and think critically during the conversation and to enthusiastically participate in classroom activities. If you feel as though you are having trouble making your voice heard, please contact the instructor. From time to time, participation might also include a short assignment to be turned in or presented in class.

Final Paper: 20% of your grade (40 points)

The paper should be 800-900 words, due by 5 pm on the last day of classes, December 3rd. The paper can be submitted online through Canvas. See Workshop Report Writing Guidelines on Canvas for grading rubric.

The goal of the paper is to:

1) **investigate an energy source and an associated issue**, such as sustainability, climate, water, land, wildlife, air quality, etc.

2) **put the issue into context** – how important is it? What policies are related to it? How effective are they? What does society think about this energy source, and how has that changed over time?
3) **think critically** about what you would **do differently** about the issue and how you would go about making those changes happen

Explore Energy

Are you interested in knowing more about energy opportunities at Stanford? Energy-related majors, courses, internships, jobs, etc.? Check out the Explore Energy website to find out more: https://energy.stanford.edu/explore-energy

The Teaching Team

Diana Gragg: Diana is a Core Lecturer in Civil and Environmental Engineering (CEE) at Stanford and the Managing Director of Explore Energy / Understand Energy at the Precourt Institute for Energy. She received her M.S. and PhD in the CEE Atmosphere/Energy program in 2012, a postdoc at the Precourt Energy Efficiency Center in 2015 and has a background in the oil and chemical industry, air pollution, and sustainable transportation. She took the class way back in 2004, and joined the teaching team in 2015. She loves animals, running, hiking, water polo, skiing – and anything that involves spending time with her family.

Kirsten Stasio: Kirsten is a VP at MAP Energy and an Adjunct Professor in CEE at Stanford. She graduated from Stanford in 2014 with an E-IPER MS degree and an MBA. Her background includes working on Pacific Gas and Electric (PG&E)’s energy efficiency team, on Apple's energy team, and at the World Resources Institute (WRI), an environmental think-tank.

Jane Woodward: Jane is an Adjunct Professor in CEE at Stanford and has been teaching a version of this course since 1991. She is a founder and managing partner of MAP Energy, a renewable energy and natural gas investment company.

The teaching team’s complete bios are available at: https://energy.stanford.edu/understand-energy/instructors. Please use Slack to contact the teaching team (either publicly or privately).

Honor Code

Violating Stanford University’s Honor Code is a serious offense, even when the violation is unintentional. The Honor Code is available at: https://communitystandards.stanford.edu/student-conduct-process/honor-code-and-fundamental-standard

Specifically, adhering to the Stanford Honor Code implies that all work in exams and quizzes must be done individually. For homework, students may consult with TAs and with other students, but must write up solutions independently based on their own understanding. All references and sources (e.g., in field trip reports) must be clearly identified and properly referenced. Lastly, if you work with other students on a homework set, you must acknowledge their names on the front page of your submission. Please refer to the Homework Policy posted on Canvas regarding collaboration on homework assignments.
Access and Accommodations

Stanford is committed to providing equal educational opportunities for disabled students. Disabled students are a valued and essential part of the Stanford community. We welcome you to our class.

If you experience disability, please register with the Office of Accessible Education (OAE). Professional staff will evaluate your needs, support appropriate and reasonable accommodations, and prepare an Academic Accommodation Letter for faculty. To get started, or to re-initiate services, please visit oae.stanford.edu.

If you already have an Academic Accommodation Letter, we invite you to share your letter with us. Academic Accommodation Letters should be shared at the earliest possible opportunity so we may partner with you and OAE to identify any barriers to access and inclusion that might be encountered in your experience of this course.

COVID-19

Given that we are still in the midst of a global pandemic, if you feel sick, do not come to class, even if you suspect you just have a cold or allergies. Please do this out of an abundance of caution and out of respect for your peers and the teaching team and guests. We will be very accommodating on illness-related absences and will help you make-up for any missed work.

In compliance with Santa Clara County policies effective August 2021, Stanford University is mandating the use of masks indoors for everyone, regardless of vaccination status. This means that whenever we spend time together indoors - in class, sections, labs, and office hours - we are each required to wear a mask that fully covers your nose and mouth. If we see someone not wearing a mask indoors, this is not necessarily a violation of the requirement. Some of us have health conditions precluding our ability to wear masks. Students in this situation should work with the Office of Accessible Education immediately, to receive an accommodation for a mask exemption. In addition, some of us might feel more comfortable wearing masks even when not required, such as when we are outdoors. Some of us might feel more comfortable social distancing even when not required, for example, during small-group work in class or section and while masked. All of our preferences are reasonable, and it is important that we treat each others’ preferences with respect and care.

In the first couple of weeks of class, we will formulate community commitments for how we will interact with one another. One of the issues we will explicitly discuss is honoring our respective preferences for COVID-19 health and safety beyond the bare requirements, so that we each feel comfortable and prepared to learn in class. You can find the most current policies on campus masking requirements on the COVID-19 Health Alerts site.

Lectures Will Be Recorded
Lectures will be recorded via Zoom and will be available on the Canvas site. These recordings might be reused in other Stanford courses, viewed by other Stanford students, faculty, or staff, or used for other education and research purposes. Note that your questions and participation will also be recorded during lectures. If you have questions or concerns about this, please contact a member of the teaching team.