Renewable Ocean Energy Technologies

- The oceans cover more than 70% of the earth’s surface => enormous renewable energy sources
- **Moving water resources** – *focus of this talk*
 - Ocean waves, tides, ocean and river currents
- Other resources – *will not be covered here*
 - Offshore wind
 - Offshore solar
 - Ocean thermal
 - Geothermal
 - Salinity gradient
 - Marine biomass
DOE directed to establish marine and hydrokinetic technology program

- **Energy Independence and Security Act of 2007, Subtitle C**
 - Sec. 633. Marine and Hydrokinetic Renewable Energy Research and Development:

 "The Secretary…shall establish a program of research, development, demonstration, and commercial application to expand marine and hydrokinetic renewable energy production…"

- Sept 18, 2008: Announced awards up to $7.3 million for R&D clean technology water power projects:
 - Technology development – up to $600k
 - Market acceleration – up to $500k
 - National Marine Energy Centers – up to $1.25 million
 - Oregon State University, University of Washington
 - University of Hawaii

Definition of ‘Marine and Hydrokinetic renewable energy’ under EISA

(1) waves, tides, and currents in oceans, estuaries, and tidal areas;
(2) free flowing water in rivers, lakes, and streams;
(3) free flowing water in man-made channels; and
(4) differentials in ocean temperature (ocean thermal energy conversion).

Explicitly excludes “energy from any source that uses a dam, diversionary structure, or impoundment for electric power purposes.”
Overview

- Renewable ocean energy conversion systems
 - Waves
 - Terminators, attenuators, point absorbers
 - Ocean currents, river currents, tides
 - Horizontal & vertical axis turbines, others
- Horizontal axis turbines
 - What are the differences between wind and marine turbines?
 - How do we analyze/design marine turbines?
 - What are the existing challenges for the design of marine (and wind) turbines?

Renewable Ocean Energy Technologies

Ocean Wave Energy

- Force reverses every 4-20 seconds
- Driven primarily by winds
- Can be predicted to days ahead
- Diverse range of kinetic or potential energy devices
- Global electricity potential ~ 8-80,000 TWh/year (IEA-OES, 2006)
Renewable Ocean Energy Technology
Ocean Wave Energy – Terminators & Attenuators

Sea Dragon
Wave Dragaon ApS

Pelamis “Sea Snake”
Pelamis Wave Power LTD

Renewable Ocean Energy Technology
Ocean Wave Energy – Point Obsorbers

PowerBuoy
Ocean Power Technologies, NJ

AquaBuOY
Finavera Renewables

Smart system that monitors wave conditions and controls power
Renewable Ocean Energy Technologies

Ocean Current Energy

- Relatively steady, unidirectional gulf stream with high-velocity core
- Driven by wind and solar heating of the water near the equator, and deeper currents by density and salinity variation gradients.
- Typical energy conversion device: *underwater turbine*
- Global electricity potential ~ 50 TWh/year (Radkey, 1980)

River Current Energy

- Governed by precipitation
- Stochastic in nature
- Large sediment loads
- Debris and ice impact
- Difficult to schedule maintenance since there are no predictable slack water
- Uni-directional flow
- Typical energy conversion device: *underwater turbine*
- US electricity potential ~110 TWh/year (Miller, 1996)

Roosevelt Island tidal energy project by Verdant Power at East River, NY
Renewable Ocean Energy Technologies

Tidal Energy

- Produced by centrifugal force caused by the earth’s rotation and gravitational attraction of the moon (primary) and the sun (secondary).
- Bi-directional flow due to flood and ebb tide
- Can be reliably predicted years to centuries ahead
- Typical energy conversion device: tidal barrages and underwater turbines
- Global electricity potential ~ 1800 TWh/year

Global Tidal Distribution

North American Tidal Energy Potential
(Electric Power Research Institute, 2007)

Current Energy Conversion Devices

- Horizontal axis turbines
- Vertical axis turbines
- Alternative devices
Horizontal Axis Turbines

Advantages
- Can borrow from advanced wind energy technology
- Generally self starting & more efficient
- Can be supported from the top or bottom

Disadvantages
- Need yawing mechanism to face flow (for tides)

Vertical Axis Turbines

Advantages
- Omni-directional
 - No need for yawing mechanism
- Can be mounted at the base or at the top
 - Top mounted: does not require support tower and generator can be located above waterline
 - Simpler installation and maintenance so reduce overall cost.

Disadvantages
- Poor self-starting capabilities
- Less efficient compared to horizontal axis turbine with the same capture area.
- Have not been shown to be commercially successful in the wind industry (typically base mounted for easy of installation & maintenance, but poor wind due to boundary layer effect)

Images: Diagrams of horizontal and vertical axis turbines, illustrating their designs and components.
Alternative Devices
Many designs, but few has made it to full scale

Stingray Tidal Stream Generator
IHC Engineering Business Ltd. (US)

• Lift/flutter vanes (oscillating hydrofoil)
• 500KW power rating

VIVACE
University of Michigan

Successfully tested at V=0.823m/s

Vortex Induced Vibration for Aquatic Clearn Energy

Industry Learning Curve

• Takes 5-10 years to turn conceptual devices into commercial application
• Two decades ago, wind energy’s cost of electricity started at 20 cents/kWh, today it is \(~4\) cents/kWh (utility scale turbines).
• Marine/tidal energy is entering the market at a cheaper Cost of Electricity, largely due to the advanced state and experience of wind technology.
Evolution of Commercial U.S. Wind Turbines

- Current objectives: reduce the COE produced by an additional 30% by 2012

20% Wind Energy by 2030

Annual and cumulative wind installations needed to meet 20% wind energy scenario by 2030
What are the differences between a wind and a water turbine?
Wind Turbine vs Water Turbine

<table>
<thead>
<tr>
<th>Wind turbine (land-base)</th>
<th>Water turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid density, ρ</td>
<td>1.223 kg/m³</td>
</tr>
<tr>
<td>Flow speed, V</td>
<td>10-15 m/s</td>
</tr>
<tr>
<td>Power coefficient, C_p</td>
<td>0.35</td>
</tr>
<tr>
<td>Power density, $P/A=0.5pV^3C_p$</td>
<td>214 - 722 W/m²</td>
</tr>
<tr>
<td>Induction factor, a</td>
<td>0.626</td>
</tr>
<tr>
<td>Diameter, d</td>
<td>50 m</td>
</tr>
<tr>
<td>Power, P</td>
<td>420 kW - 1.4 MW</td>
</tr>
<tr>
<td>Drag, $D=0.5pV^24a(1-a)\pi d^2/4$</td>
<td>112 kN - 253kN</td>
</tr>
</tbody>
</table>

Pros and Cons of Marine/Tidal Turbines

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
<th>Uncertain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly predictable</td>
<td>Technically challenging (blades, controller, gear box, generator, support structure)</td>
<td>Resource dependent (undersea cables, grid connection, network stability, regulations)</td>
</tr>
<tr>
<td>High power density</td>
<td>Site selection and turbine design are both technically challenging</td>
<td>Field performance, support structure, deployment, O&M, cost</td>
</tr>
<tr>
<td>Lower visual impact</td>
<td>Harsh sea environment, slow permit process, high initial cost</td>
<td>Market acceptance, impact on environment and marine life</td>
</tr>
<tr>
<td>Tremendous crossover potential from wind turbines</td>
<td>More challenging (much higher loads, bi-directional flow, harsh sea environment, cavitation)</td>
<td>Vessel impact, interaction with surface waves, 3D bathymetry, mobile bed.</td>
</tr>
</tbody>
</table>
Marine Current Turbines Ltd. (UK based)
SeaGen Project

- First commercial-scale tidal turbine
 - Northern Ireland (initially generated 150kW into the grid, but once fully operation will generate 1.2 MW)
 - Strangford Lough, 400m from shoreline
- Twin horizontal axis turbine on a monopole foundation
- Variable pitched contra-rotating blades
- 10-15 rpm; 15-20m diameter
- Life-cycle unit cost
 - Strangford: 16.8 cents/kWh
 - Anglesey Skerries when fully developed: 5.2 cents/kWh
Verdant Power (US based)
Roosevelt Island Tidal Energy Project

- 5m rotor diameter
- Pylon mounted
- Yaw bearings allow pivot to follow flow
- 7000 operation hours (45MWh to NYC grid) between 12/06-06/07
- 6 turbine, 200 kW array installed May 2007, all were taken offline for repairs and redesign (inadequate strength)
- New blades are solid cast AlMag
- Preliminary permit for 30 turbines accepted by DOE in Dec 2008

Challenges of Marine/Tidal Turbines

- High hydrodynamic forces ($\rho_{\text{water}} \sim 840 \rho_{\text{air}}$)
 - System strength, fatigue, vibration, and stability issues
- Bi-directional current (flood and ebb tide), tidal boundary layer, and interaction with waves, bathymetry, and adjacent structures
 - Spatial and temporal variation in inflow
 - Need active (and passive) blade pitch control
- Harsh sea environment
 - Corrosion, barnacles, seaweed, sediments, debris, etc.
 - Vessel and ice impact
- Hydrodynamic cavitation
 - Intermittent, can occur on both sides of the blade surface
 - Performance decay, blade surface erosion, noise, and vibration
Hydrodynamic Cavitation

- High frequency (~MHz) & high amplitude (~20-60ksi) pressure waves
- Microjet velocities up to 1000 m/s
- Material fatigue, pits, erosion, noise

Mixed sheet & cloud cavitation

Cavitation tunnel testing: 800mm turbine at TSR=7.5, σ=0.64, V=1.4 m/s
How do we analyze/design marine turbines?

Momentum Theory

Classic Momentum Theory
- Betz (1926)
- Estimates of optimal power output, but cannot determine optimal rotor shape

Blade Element Momentum Theory
- Uses momentum theory to calculate axial and circumferential velocities
- Use blade element method to calculate sectional (2-D) lift and drag coefficients
- Integrate stripwise to estimate total drag (thrust) and power.

$\frac{\Delta V}{V_o} = \frac{V_s - V_o}{V_o}$

$C_D = \frac{D}{0.5 \rho V_o^2 (\pi R^2)}$

$C_{pow} = \frac{\text{useful power}}{\text{available power}}$

$C_{pow} = \frac{DV_s}{0.5 \rho \pi R^2 V_o^3}$

$C_{pow_{max}} = 0.593$ (Betz’s Limit)
Lifting Line, Lifting Surface or Vortex-Lattice Methods

- **2-D Lifting Line Theory**
 - rotor blade is reduced to a single vortex line and wake is represented as a single vortex sheet (Prandtl 1918)

- **3-D Lifting Surface Theory/Vortex-Lattice Methods**
 - accounts for finite chord length using a distributions of vortices, but not thickness effects (Weissinger 1947)
 - Can account for blade shape and capture 3-D flow characteristics
 - Employ linear approximations
 - Very fast
 - Breaks down at leading edge and tip

Boundary Element or Panel Methods

- Distributes singularities (vortices, sources, doublets) to represent blade and wake surfaces (e.g. Hess 1972, van Gent 1975 for propellers, but only recently begun for turbines).
 - More time consuming
 - Accounts for nonlinear thickness-loading coupling
 - Can capture details at the leading edge and tip.
CFD Methods

- Unsteady, turbulent flow condition
- Rotating blades and hub.
- Transient cavitation (multiphase flow)
- Very time consuming!!! Not practical for the design stage.

How about the structural response?

- Excessive blade loads may lead to blade strength failure.
- Blade deflections and vibrations interact with hydrodynamic forces, which may increase blade loads, and lead to system fatigue and instability issues (resonance, flutter, divergence, et.)
A coupled BEM-FEM for the transient hydroelastic analysis of marine (and wind) turbines

\[v_{\text{total}} = v_{\text{effective inflow}} + v_{\text{potential velocity induced by the rotor}} \]

\[v_{\text{effective inflow}} = v_{\text{inflow in absence of rotor (nominal)}} + v_{\text{vortical interaction between rotor and flow field}} \]

Numerical Modeling
Potential-Based Boundary Element Method

- Complex, turbulent, non-uniform flow field
- Vorticity in the flow field interacts with the action of the rotor
3D Governing Equations
(in blade-fixed coordinate)

- Governing eqns for incompressive, inviscid fluid
 \[\frac{Dv}{Dt} = -\nabla \left(\frac{P}{\rho} \right) + g - \Omega \times (\Omega \times x) - 2\Omega \times v, \]
 \[\nabla \cdot v = 0 \]

- Total velocity
 \[v_t(x,t) = v_{in}(x,t) + \nabla \phi(x,t) \]

- Inflow velocity
 \[v_{in}(x,t) = v_e(x_s,r_s,\theta_s) - \Omega \times x \]

Boundary Element Method
Green’s Third Identity

\[\nabla^2 \phi = 0 \]
\[\left\{ \begin{array}{l}
 2\pi \phi_p(t) \\
 4\pi \phi^*_p(t)
\end{array} \right\} = \left\{ \begin{array}{l}
 0 \\
 \pm 2\pi \Delta \phi_p(t)
\end{array} \right\} + \int_{S_B(t)} \left[\phi_q(t) \frac{\partial G(p;q)}{\partial n_q(t)} - G(p;q) \frac{\partial \phi_q(t)}{\partial n_q(t)} \right] ds \\
 - \int_{S_{CW}(t)} \left[\frac{\partial \phi_w(t)}{\partial n} G(p;q) \right] ds \\
 + \int_{S_{CW}(t) \cup S_W(t)} \Delta \phi_w(r_q,\theta_q,t) \frac{\partial G(p;q)}{\partial n_q(t)} ds \\
\]

The mixed boundary value problem can be solved using a potential-based BEM with constant strength (source and dipole) hyperboloidal panels; \(G = 1/R_{pq} \)
Boundary Conditions

Dynamic Boundary Condition
\[p = p_v \]

Kinematic Boundary Condition (flow tangency condition)
\[v_t \]

Cavity detachment point
\[h(s) \]

Foil LE
\[V_{in} \]

\[\alpha \]

Foil TE
\[V_c \]

Kutta Condition
\[s \]

Cavity Closure Condition
\[l \]

Search for the cavity planform

1/28/09
Effect of cavity on the lift and drag

Initial and converged cavity shapes and pressure distributions on a 3D foil

Marine Current Turbine

Turbine:
- Diameter=800mm
- No. of blades=3
- Hub radius=80mm
- NACA 63-815 blade section
- Adjustable pitch

Cavitation Tunnel:
- Length=5m
- Breadth=2.4m
- Height=1.2m
- Max flow speed=8m/s
- Pressure range=0.2-1.2atm

Towing Tank:
- Length=60m
- Breadth=3.7m
- Depth=1.8m
- Max carriage speed=4.5m/s
Marine Current Turbine
Predicted (BEM) vs. Measured Performance

\[TSR = \frac{\Omega R}{V} = \frac{\pi}{J} \; ; \; \phi = \text{pitch angle at hub} \]

\[C_P = \frac{P}{0.5 \rho AV^3} \; ; \; C_T = \frac{T}{0.5 \rho AV^2} \]

Power coefficient

Thrust coefficient

Marine Current Turbine
Predicted vs. Observed Cavitation Pattern

\[TSR = \frac{\Omega R}{V} = \frac{\pi}{J} = 7.5 \]

\[\sigma_s = \frac{p_e - p_v}{0.5 \rho AV^2} = 3.9 \]

\[-C_{pres} = \frac{p - p_v}{0.5 \rho AV^2} \]

Looking from upstream

Wetted (suction)

Cavitation (suction)

Prof. Young, Princeton University
23
Marine Current Turbine
Performance Decay Due to Cavitation

\[TSР = \frac{ΩR}{V} = \frac{π}{J} \]
\[C_Р = \frac{P}{0.5ρAV^3} \]
\[C_T = \frac{T}{0.5ρAV^2} \]

Hydroelastic Formulation
(with fluid-structure interaction)

- **Decomposition of perturbation potentials**
 \[v_i(x,t) = v_{in}(x,t) + \nabla \phi(x,t); \quad \phi(x,t) = \phi(x,t) + \Phi(x,t); \quad \nabla^2 \Phi = 0 \]
 \[\phi = \text{potential due to rigid blade rotation} \]
 \[\Phi = \text{potential due to elastic blade deformation} \]

- **Decomposition of pressure**
 \[P = P_t + P_v = \text{total pressure} \]
 \[P_t = P_v + \rho \left[\frac{1}{2} |v_{in}|^2 - \frac{∂φ}{∂t} - \frac{1}{2} |v_{in} + \nabla \phi|^2 \right] \] (rigid blade rotation)
 \[P_v = \rho \left[-\frac{∂\Phi}{∂t} - v_{in} \cdot \nabla \Phi \right] \] (elastic blade deformation)
Hydroelastic Formulation

Solid equation of motion in blade-fixed coordinates

\[[M] \{ \ddot{u} \} + [C] \{ \dot{u} \} + [K] \{ u \} = \{ F_h \} + \{ F_{ce} \} + \{ F_{co} \} \]

\[[M] = \int \rho_s [N]^T [N] \, dV; \quad [C] = \int c [N]^T \dot{[N]} \, dV; \quad [K] = \int [B]^T [D] [B] \, dV \]

\[\{ F_h \} = \int [N]^T \{ P_r + P_v \} \, dS \]

\[\int [N]^T \{ P_r \} \, dS = - \rho \int [N]^T \{ \dot{H} \} \, dS \{ \ddot{u} \} \]

\[\int [N]^T \{ P_v \} \, dS = - \rho \int [N]^T \{ \dot{V}_{in} \cdot \nabla H \} \, dS \{ \ddot{u} \} \]

\[[M + M_H] \{ \ddot{u} \} + [C + C_H] \{ \dot{u} \} + [K] \{ u \} = \left(\int [N]^T \{ P_r \} \, dS \right) + \{ F_{ce} \} + \{ F_{co} \} \]

\[\{ F_{ce} \} = \int \rho_s [N]^T \{-2 \Omega \times (\Omega \times (x + u))\} \, dV; \]

\[\{ F_{co} \} = \int \rho_s [N]^T \{-2 \Omega \times \dot{u}\} \, dV \]

Marine Current Turbine

D=20 m, TSR=6, n=14.32 rpm

Need high-strength, corrosion resistant alloy!
Marine Current Turbine

Modal Characteristics – frequencies significantly decrease in water due to added mass effects

- **Mode 1**
 - $f_{dry} = 2.86 \text{ Hz}$
 - $f_{wet} = 1.68 \text{ Hz}$

- **Mode 2**
 - $f_{dry} = 10.57 \text{ Hz}$
 - $f_{wet} = 6.58 \text{ Hz}$

- **Mode 3**
 - $f_{dry} = 17.0 \text{ Hz}$
 - $f_{wet} = 15.0 \text{ Hz}$

Unsteady analysis – tidal boundary layer flow

- $V_{hub\ axis} = 2.5 \text{ m/s}$
Marine Current Turbine
Tidal boundary layer flow – pressure distributions

Marine Current Turbine
Tidal boundary layer flow – unsteady performance

<table>
<thead>
<tr>
<th></th>
<th>STEADY mean</th>
<th>UNSTEADY mean</th>
<th>1st harmonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{xs} (kN)</td>
<td>771.02</td>
<td>768.31</td>
<td>1.07</td>
</tr>
<tr>
<td>F_{ys} (kN)</td>
<td>0.00</td>
<td>5.38</td>
<td>0.71</td>
</tr>
<tr>
<td>F_{zs} (kN)</td>
<td>0.00</td>
<td>36.75</td>
<td>0.76</td>
</tr>
<tr>
<td>M_{xs} (kNm)</td>
<td>751.49</td>
<td>768.31</td>
<td>2.06</td>
</tr>
<tr>
<td>M_{ys} (kNm)</td>
<td>0.00</td>
<td>20.00</td>
<td>23.93</td>
</tr>
<tr>
<td>M_{zs} (kNm)</td>
<td>0.00</td>
<td>227.13</td>
<td>25.80</td>
</tr>
<tr>
<td>Power (MW)</td>
<td>1.125</td>
<td>1.112</td>
<td></td>
</tr>
</tbody>
</table>
Marine Current Turbine
Tidal boundary layer flow – stresses and deflections

Power Output for a Variable-Speed Design
Controller system changes the pitch to control the rotor speed, and to limit power output
How would it perform at the San Francisco Golden Gate Bridge Site?

- Based on site velocity data from EPRI (2006)
- \(\eta_{\text{drive train}} \times \eta_{\text{generator}} \times \eta_{\text{power conditioning}} = 0.89 \)

Graph:
- **Annual Power:** 2752 MWh per each 20m turbine
- **Electric Power Output (kW):**
 - Frequency (Hz)
 - Total Power (kWh)

Future Design Needs (wind & water turbines):

- Blade design
- Site selection
- Advance passive control strategies
- Support structure
- Extreme loads
- Durability in harsh sea conditions
- Impact
- Noise

- Advance embedded sensors
- Environmental and structural health monitoring (to reduce maintenance cost)

Hydroelasticity:
- Hydrodynamics + structural dynamics

Sensors

Control

- Advance active control strategies (gear box, generator, controller)
- Fatigue & power issues
- Grid connection

- Increase system efficiency, reliability, and robustness
- Reduce total cost
- Reduce impact to wild life and environment
- Reduce noise

1/28/09
Thank You!

This research is supported by ONR Grant Nos. N00014-07-1-0491 and N00014-08-1-0475 managed by Dr. Ki-Han Kim.