Climate change science

Chris Field

Carnegie Institution: Department of Global Ecology
www.global-ecology.org
Year 2060: The search for a breakthrough technology to solve climate change continues.

It's a time machine we hope will take us back 50 years when we should have put a price on carbon.

We better hurry!

No! That's the great thing about this technology!
Article 2 of the UNFCCC

The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.
Article 2 of the UNFCCC

The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.
Article 2 of the UNFCCC

The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.
Risk = probability × consequence

- Loaded dice
- Car driving toward a cliff in the fog
- Dumping nails on the road of life
Special challenges of climate change

- Gradual, delayed onset
- Emerges against a variable background
- “Permanent” impacts
- Global, differentiated impacts
- Contrasting historical and future responsibility
- Contrasting responsibility and vulnerability
“Warming of the climate system is unequivocal”

Global Land–Ocean Temperature Temperature Index

- Black: annual mean, global met stations
- Red: 5-year running mean, global met stations

NASA Goddard Institute for Space Studies, updated through 2010
XXXI. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. By Prof. Svante Arrhenius *.
Climate sensitivity: Uncertainty in a key parameter

IPCC most likely value

Higher values cannot be excluded

Carolyn Snyder thesis, Stanford, 2010
Climate sensitivity from a comprehensive paleoclimate reconstruction

Carolyn Snyder thesis, Stanford, 2010
Climate sensitivity: Uncertainty in a key parameter

IPCC most likely value

Revised best estimate

Higher values cannot be excluded

Carolyn Snyder thesis, Stanford, 2010