The Silicon Photovoltaic Roadmap

The Stanford Energy Seminar
November 14, 2011

Dick Swanson
President Emeritus, SunPower
Safe Harbor Statement

This presentation contains forward-looking statements within the meaning of the Private Securities litigation Reform Act of 1995. Forward-looking statements are statements that do not represent historical facts and may be based on underlying assumptions. SunPower uses words and phrases such as “may,” “will,” “should,” “could,” “would,” “expect,” “plan,” “anticipate,” “believe,” “estimate,” “predict,” “potential,” “continue,” “guided” and similar words and phrases to identify forward-looking statements in this presentation, including forward-looking statements regarding: (a) plans and expectations regarding future financial results, operating results, liquidity, cash flows, capital expenditure and business strategies, (b) management’s plans and objectives for future operations, (c) the company’s projected costs, drivers of cost reduction and cost reduction roadmap, (d) forecasted demand growth in the solar industry, and projected bookings and pipelines, (e) project construction, completion, ability to obtain financing, sale and revenue recognition timing, (f) growth in dealer partners, (g) product development, advantages of new products, and competitive positioning, (h) manufacturing ramp plan, scalability and expected savings, (i) future solar and traditional electricity rates and cost savings of SunPower systems, (j) trends and growth in the solar industry, and (k) the success and benefits of our joint ventures, acquisitions and partnerships. Such forward-looking statements are based on information available to SunPower as of the date of this presentation and involve a number of risks and uncertainties, some beyond SunPower’s control, that could cause actual results to differ materially from those anticipated by these forward-looking statements, including risks and uncertainties such as (i) ability to achieve the expected benefits from our relationship with Total; (ii) the impact of regulatory changes and the continuation of governmental and related economic incentives promoting the use of solar power, and the impact of such changes on revenues, financial results, and any potential impairments to intangible assets, project assets, and goodwill; (iii) increasing competition in the industry and lower average selling prices, and any revaluation of inventory as a result of decreasing ASP or reduced demand; (iv) ability to obtain and maintain an adequate supply of raw materials, components, and solar panels, as well as the price it pays for such items; (v) general business and economic conditions, including seasonality of the solar industry and growth trends in the solar industry; (vi) ability to revise its portfolio allocation geographically and across downstream channels to respond to regulatory changes; (vii) ability to increase or sustain its growth rate; (viii) construction difficulties or potential delays, including obtaining land use rights, permits, license, other governmental approvals, and transmission access and upgrades, and any litigation relating thereto; (ix) ability to meet all conditions for obtaining the DOE loan guarantee and any litigation relating to the CVSR project; (x) the significant investment required to construct power plants and ability to sell or otherwise monetize power plants; (xi) fluctuations in operating results and its unpredictability, especially revenues from the UPP segment or in response to regulatory changes; (xii) the availability of financing arrangements for projects and customers; (xiii) potential difficulties associated with operating the joint venture with AUO and achieving the anticipated synergies and manufacturing benefits; (xiv) ability to remain competitive in its product offering, obtain premium pricing while continuing to reduce costs and achieve lower targeted cost per watt; (xv) liquidity, substantial indebtedness, and its ability to obtain additional financing; (xvi) manufacturing difficulties that could arise; (xvii) the success of research and development efforts and the acceptance of new products and services; (xviii) ability to protect its intellectual property; (xix) exposure to foreign exchange, credit and interest rate risk; (xx) possible impairment of goodwill; (xxi) possible consolidation of the joint venture AUO SunPower; and (xxii) other risks described in SunPower’s Annual Report on Form 10-K for the year ended January 2, 2011, Quarterly Reports on Form 10-Q for the quarters ended July 3, 2011 and other filings with the Securities and Exchange Commission. These forward-looking statements should not be relied upon as representing SunPower’s views as of any subsequent date, and SunPower is under no obligation to, and expressly disclaims any responsibility to, update or alter its forward-looking statements, whether as a result of new information, future events or otherwise.
SunPower 2011

- 2010: Revenue $2.23B
- 5,500+ Employees
- 550+ MW 2010 production
- >1.5 GW solar PV deployed

- World-leading solar conversion efficiency
- Diversified portfolio: roofs to power plants
- 1,500 dealer partners, #1 R&C USA
- 5 GW power plant pipeline

Residential
Commercial
Power Plants
SunPower vs. Conventional c-Si Cell

SUNPOWER SOLAR CELL 22% EFFICIENCY

- **Lightly doped front diffusion**
 - Reduces recombination loss
- **Texture + ARC**
- **Backside Mirror**
 - Reduces back light absorption & causes light trapping
- **Localized Contacts**
 - Reduces contact recombination loss
- **Passivating SiO₂ layer**
 - Reduces surface recombination loss
- **Backside Gridlines**
 - Eliminates shadowing
 - High-coverage metal reduces resistance loss

CONVENTIONAL SOLAR CELL 15% EFFICIENCY

- **Texture + ARC**
- **Gridlines**
- **N-Type diffused junction**
- **Silver Paste Pad**
- **P-Type multi-crystalline silicon**
- **Aluminum paste**
Alamosa 19 MW: Xcel
Alamosa County, CO
Swiss Alps Alpine Hut
Talk Outline

- Where we have come from in PV
- Where we are now
- Where we are going
- How we are going to get there
Situation in 1975

Wafered Silicon Process

- Polysilicon: $300/kg
- Ingot: 3 inches in diameter
- Wafer: Sawn one at a time
- Solar Cell: 0.5 watts each
- Solar Module: $100/watt
- Systems: $200/watt
Historical PV Learning Curve (ca. 2002)

- 1979: $33.44/W
- 2002: $3.65/W
- 2010: $2.20/W
- 2013: $1.74/W
After Silicon Shortage

- 1979: $33.44/W
- 2010: $1.81/W
- 2010: $2.20/W

Module Price ($/W) vs. Cumulative Production (MW)
If the original learning curve were followed, consumers would have spent $83B to get to 40GW of cumulative modules.
Consumers actually spent $17B (20%) more (0.43/W)
Zooming in on Recent Times

The graph illustrates the trend in Module ASP ($2010/W) against Cumulative Production (MW) from 2005 to 2020. Key points include:

- **2005**: Module ASP was $3.00/W.
- **2011**: Module ASP dropped to $1.32/W.
- **2015**: Module ASP further decreased to $0.99/W and $0.75/W.
- **2020**: Module ASP reached $0.50/W.

The projections show a continued decline, with a target price of $1.12/W by 2020, as required by ITC.
PV Power Plants Are Cost Competitive Today
2012 LCOE by Resource $/MWh: 2010 USD

<table>
<thead>
<tr>
<th>Resource</th>
<th>Levelized Cost ($/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Solar PV</td>
<td>$73 ground – 192 roof</td>
</tr>
<tr>
<td>Solar Thermal</td>
<td>$120 - 198</td>
</tr>
<tr>
<td>Wind</td>
<td>$38 - 79</td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>$164 off-shore</td>
</tr>
<tr>
<td>Conventional Gas Peaking</td>
<td>$211- 242</td>
</tr>
<tr>
<td>Gas CC</td>
<td>$69-97</td>
</tr>
<tr>
<td>Nuclear</td>
<td>$77-113</td>
</tr>
<tr>
<td>Coal</td>
<td>$70-152</td>
</tr>
</tbody>
</table>

Prices include federal incentives
Not as Pretty Without ITC

2012 LCOE by Resource $/MWh: 2010 USD

Renewables

- Solar PV: $104 ground – 274 roof
- Solar Thermal: $171 - 283
- Wind: $54 - 113, $234 off-shore

Conventional

- Gas Peaking: $211- 242
- Gas CC: $69-97
- Nuclear: $77-113
- Coal: $70-152

Prices include federal incentives
Regional PV Market

Source: EPIA
4.2 GW PV in 2009…10+ GW in 2010

European 2009 New Installed and Retired Capacity (MW)

Source: EWEA, February 2010
German Feed-in Tariff will be less than retail in 2012!

Source: Deutsche Bank
Grid parity in Europe 2010
PAST COST PROJECTIONS CAME TRUE
2002 NREL Workshop
Wafer Thickness Roadmap

SunPower Actuals

Wafer Thickness (um)

2002 NREL Workshop

Year
Module Cost ($/W)

2010 Actual (2002$)
2012 $1.00/W
Incremental Improvements in Silicon Technology will Continue to Drive Solar Panel Price Reduction.

- 1980: $21.83/W
- 1990: $6.07/W
- 2000: $3.89/W
- 2010: $1.82/W
- 2013: $1.44/W

Retail Parity: 2010 Actual $1.81/W
SunPower UPP LCOE Competitive with CA MPR

Notes: LCOE = delivered electricity price to utility via PPA; MPR=25-yr Market Price Referent , 30% ITC /MACRS included
unlevered return range for plant owner 7.5%-8.5%, sunlight range included

End of ITC, 2016
Schleicher-Tappeser (Jan 2011)

Grid parity in Europe 2016

Diagram showing the average price of electricity in EUR/kWh against annual irradiation on module in kWh/(m²·y) for various countries in Europe.
HOW DO WE GO FORWARD?
Conventional Wafered Silicon Value Chain:

Rough percentages for conventional c-Si:

- Polysilicon: 12%
- Ingot: 6%
- Wafer: 9%
- Solar Cell: 14%
- Solar Panel: 25%
- System: 34%

Total Cost: $2.63/W_{ac}
SunPower cell efficiency history

- **Laboratory Prototyping Results**
- **Production median**

Gen 1
- 2003: 20.6%
- 2004: 20.6%
- 2005: 20.6%
- 2006: 22.0%

Gen 2
- 2007: 22.4%
- 2008: 23.4%

Gen 3
- 2009: 24.2%
Generation 3 Modules Status – 20.9%

- Engineering scale production of Generation 3
- Module performance continues to improve
- 96-Cell module presently achieving 20.9%*

<table>
<thead>
<tr>
<th></th>
<th>Area (m²)</th>
<th>Voc (V)</th>
<th>Isc (A)</th>
<th>FF (%)</th>
<th>Pmax (W)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-Cell Module</td>
<td>1.63</td>
<td>69.02</td>
<td>6.38</td>
<td>77.4</td>
<td>341W</td>
<td>20.9%*</td>
</tr>
</tbody>
</table>

*Unconfirmed
Cost Reduction: Silicon Utilization

SunPower’s Cell Ideal for Thin Silicon

SunPower’s cell architecture maintains performance as silicon thickness reduces.
Intrinsic cost of silicon ingot is not an issue

<table>
<thead>
<tr>
<th></th>
<th>Ingot cost</th>
<th>Silicon use</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Today</td>
<td>$100/kg</td>
<td>5g/W*</td>
<td>$0.50/W</td>
</tr>
<tr>
<td>Possible</td>
<td>$50/kg</td>
<td>1g/W**</td>
<td>$0.05/W</td>
</tr>
</tbody>
</table>

*Approximate SunPower today
**100 um thick, 23% cell, kerfless wafering
2014 SunPower Panel Cost Reduction Roadmap

$/W

Q407 $3.01
Q408 $2.38
Q409 $1.91
Q410 $1.71
Q411
Q412
Q413
Q414

- $-

Fab 3 Ramp
135 um wafers
Lean Fab Mngt
Material Red’n

Gen 3 Ramp

Step Red’n
DW Sawing

$1.00

© 2011 SunPower Corp.
Next Steps: Glass superstrates???

High Efficiency SunPower Cell + 23%

Less than 100 µm thick

Glass

Si – n-type
Passivated Contacts
Front Surface Field Passivation
Optimized Diffusion & SiNx
Rear Dielectric
Optimized for Passivation
High Lifetime Silicon Point Contacts
Small Contacts through Dielectric
Rear Mirror
Excellent Light trapping

SUNPOWER™
© 2011 SunPower Corp.
Technology Development central to Cost Roadmap

- $0.6/W c-Si Module is conceivable
- 25% cell performance practical
- Optimized process sequence
 - Back-contact process is immature (< 8 yrs old)
 - New process-steps and materials
- Reduced Silicon Usage
 - Ultra-thin Wafers (<100um), reduced Kerf or Kerfless
- No end in sight for learning curve for c-Si back contact solar cells
DOE Sunshot Goal: Make PV the lowest cost electric energy option
Near theoretical limits: ~24% efficient cells; low ($32/kg) silicon price, 80 micron kerfless wafers

Value of 24% Efficiency plus Tracking

Source: DOE $1/W Whitepaper
Solaicx Continuous Ingot Growth

Key Activities:
- Continuous Cz ingot growth
- Low-oxygen, high-lifetime material
- Development of hot zone for N-type material
- FBR polysilicon process development and implementation
- Crucible durability

Participants:
Solaicx, Santa Clara, CA
SiGen Direct Cleave Process

Direct Cleave Process

Cleaved Wafers

Silicon Ingot

Same material → 2X to 3X more wafers

- c-Si lifetime
- Excellent Edges/Surface
- High strength

Kerf-Free 50 μm c-Si wafer
Other Kerf-less Approaches

- **Pealed Wafer**
 - AstroWatt
 - Crystal Solar

- **Epitaxial Deposition and Lift-Off**
 - SOLEXEL®
BOS innovation is equally important

Figure 7: Highly automated agriculture equipment revolutionized harvesting of crops.

Source: DOE $1/W Whitepaper
WHAT CAN STOP US, AND WHAT CAN YOU DO?
Average US natural gas well
Area covered: 19.6 square miles
Power density: 287.5 hp/acre
(53 watts/square meter)

Biomass-fueled power plant
Area covered: 2,606 square miles
Power density: 2.1 hp/acre
(0.4 watts/square meter)

Wind
Area covered: 869 square miles
Power density: 6.4 hp/acre
(1.2 watts/square meter)

Solar PV
Area covered: 156 square miles
Power density: 36 hp/acre
(6.7 watts/square meter)

South Texas Project Nuclear Plant
Area covered: 18.75 square miles
Power density: 300 hp/acre
(56 watts/square meter)
“A brutal, brilliant exploration…unsentimental, unsparing, and impassioned…[P]recisely the kind of journalism we need to hold truth to power.”
--Wall Street Journal

“Should be mandatory reading for U.S. policymakers”
--National Review

<table>
<thead>
<tr>
<th>Solar PV</th>
<th>South Texas Project Nuclear Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area covered: 156 square miles</td>
<td>Area covered: 18.75 square miles</td>
</tr>
<tr>
<td>Power density: 36 hp/acre</td>
<td>Power density: 300 hp/acre</td>
</tr>
<tr>
<td></td>
<td>(6.7 watts/square meter)</td>
</tr>
<tr>
<td></td>
<td>(56 watts/square meter)</td>
</tr>
</tbody>
</table>
Myths you must refute

- PV is too small to matter…and always will be
- PV is too expensive…and will require massive subsidies
- PV takes up too much valuable land
- PV will make grid unstable
- Green jobs are a myth
THANK YOU